Name: _____

1. In the diagram below, a sequence of rigid motions maps *ABCD* onto *JKLM*.

If $m \angle A = 82^\circ$, $m \angle B = 104^\circ$, and $m \angle L = 121^\circ$, the measure of $\angle M$ is

A.	53°	В.	82°	C.	104°	D.	121°

- 2. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
 - A. octagon B. decagon
 - C. hexagon D. pentagon

Date: _____

3. Steve drew line segments *ABCD*, *EFG*, *BF*, and *CF* as shown in the diagram below. Scalene $\triangle BFC$ is formed.

Which statement will allow Steve to prove $\overrightarrow{ABCD} \parallel \overrightarrow{EFG}$?

A.	$\angle CFG$	\cong	$\angle FCB$	В.	$\angle ABF$	\cong	$\angle BFC$
C.	∠EFB	\cong	∠CFB	D.	∠CBF	\cong	∠GFC

4. In the diagram below, \overline{EF} intersects \overline{AB} and \overline{CD} at G and H, respectively, and \overline{GI} is drawn such that $\overline{\overline{GH}} \cong \overline{IH}$.

If $m \angle EGB = 50^{\circ}$ and $m \angle DIG = 115^{\circ}$, explain why $\overline{AB} \parallel \overline{CD}$.

5. In the diagram below, a square is graphed in the coordinate plane.

A reflection over which line does *not* carry the square onto itself?

- A. x = 5 B. y = 2
- C. y = x D. x + y = 4

6. In the diagram of parallelogram *FRED* shown below, \overline{ED} is extended to *A*, and *AF* is drawn such that $\overline{AF} \cong \overline{DF}$.

7. In the diagram below, $\overline{ABC} \parallel \overline{DEFG}$. Transversal \overline{BHE} and line segment HF are drawn.

If $m \angle HFG = 130$ and $m \angle EHF = 70$, what is $m \angle ABE$?

A. 40 B. 50 C. 60 D. 70

8. In $\triangle ABC$, $m \angle CAB = 2x$ and $m \angle ACB = x + 30$. If \overline{AB} is extended through point *B* to point *D*, $m \angle CBD = 5x - 50$. What is the value of *x*?

A. 25 B. 30 C. 40 D. 46

9. In the construction shown below, \overline{CD} is drawn.

In $\triangle ABC$, \overline{CD} is the

- A. perpendicular bisector of side \overline{AB}
- B. median to side \overline{AB}
- C. altitude to side \overline{AB}
- D. bisector of $\angle ACB$

10. Using a compass and a straightedge, construct the bisector of $\angle CDE$.

11. In the diagram of $\triangle ABC$ below, \overline{BD} is drawn to side \overline{AC} .

If $m \angle A = 35$, $m \angle ABD = 25$, and $m \angle C = 60$, which type of triangle is $\triangle BCD$?

- A. equilateral B. scalene
- C. obtuse D. right

12. In the diagram below of isosceles $\triangle ABC$, the measure of vertex angle *B* is 80°. If \overline{AC} extends to point *D*, what is $m \angle BCD$?

13. Using a compass and straightedge, construct the perpendicular bisector of side \overline{AR} in $\triangle ART$ shown below. [Leave all construction marks.]

14. In the diagram below, $\triangle LMO$ is isosceles with LO = MO.

If $m \angle L = 55$ and $m \angle NOM = 28$, what is $m \angle N$?

A. 27 B. 28 C. 42 D. 70

16. Using a compass and straightedge, construct the bisector of $\angle CBA$. [Leave all construction marks.]

- 17. In $\triangle ABC$, $m \angle A = 3x + 1$, $m \angle B = 4x 17$, and $m \angle C = 5x 20$. Which type of triangle is $\triangle ABC$?
 - A. right B. scalene
 - C. isosceles D. equilateral
- 18. In the diagram of $\triangle BCD$ shown below, \overline{BA} is drawn from vertex *B* to point *A* on \overline{DC} , such that $\overline{BC} \cong \overline{BA}$

In $\triangle DAB$, $m \angle D = x$, $m \angle DAB = 5x - 30$, and $m \angle DBA = 3x - 60$. In $\triangle ABC$, AB = 6y - 8 and BC = 4y - 2.

Find $m \angle D$.

Find $m \angle BAC$.

Find the length of \overline{BC} .

Find the length of \overline{DC} .

15. In the diagram below, $\ell \parallel m$ and $\overline{QR} \perp \overline{ST}$ at R.

If $m \angle 1 = 63$, find $m \angle 2$.